Waste – Law Street https://legacy.lawstreetmedia.com Law and Policy for Our Generation Wed, 13 Nov 2019 21:46:22 +0000 en-US hourly 1 https://wordpress.org/?v=4.9.8 100397344 Could This Caterpillar Help Solve one of the World’s Pollution Problems? https://legacy.lawstreetmedia.com/blogs/technology-blog/caterpillar-help-solve-pollution-problem/ https://legacy.lawstreetmedia.com/blogs/technology-blog/caterpillar-help-solve-pollution-problem/#respond Thu, 27 Apr 2017 20:33:54 +0000 https://lawstreetmedia.com/?p=60464

A certain kind of caterpillar larvae could help us break down plastics.

The post Could This Caterpillar Help Solve one of the World’s Pollution Problems? appeared first on Law Street.

]]>

Researchers may have found a solution to the problem of plastic pollution–a caterpillar’s larvae that have the very unusual ability to digest plastic. A new study published on Monday describes how the larvae work.

The specific type of caterpillar is called the wax worm, which is the larvae form of the greater wax moth. The larvae are normally used as fishing bait. Because they can chew and digest beeswax, they are commonly found in beehives. Beekeepers consider them a pest, which that is how the larvae’s ability was discovered.

Federica Bertocchini, a scientist with the Spanish National Research Council, also keeps bees as a hobby. After removing wax worms from her beehives she realized they managed to chew their way out of the plastic bag she kept them in. After conducting an experiment, Bertocchini and her counterparts at the University of Cambridge, Paolo Bombelli and Christopher J. Howe, confirmed that the larvae did actually digest the plastic and were not simply chewing it into smaller parts.

To determine that, they put the larvae in a blender and spread the paste out on plastic. Because the plastic continued to degrade even when dead larvae were lying on it, the scientists believe that an enzyme in the insects is likely responsible. They could not determine whether the worms produce the enzyme or if it’s made by the bacteria in their gut, but they did see that something broke down the plastic into smaller molecules. Beeswax is composed of a very diverse mix of lipids and it’s likely that the breaking down of polyethylene, the most common plastic, involves a similar chemical process.

The world produces 300 million tons of plastic every year, much of which ends up in landfills or in the ocean, often hurting wild animals. If a caterpillar could be used to stop some of this or if the chemical process can be replicated, it would be a major breakthrough. Bertocchini said of the discovery:

We are planning to implement this finding into a viable way to get rid of plastic waste, working towards a solution to save our oceans, rivers, and all the environment from the unavoidable consequences of plastic accumulation.

The researchers said that, ideally, they would be able to isolate the specific chemicals in the worms that break down the plastic and then insert it into bacteria that could break down plastic faster than worms can. However, they warned that such an accomplishment would take several years even if they are successful, it probably won’t solve the world’s plastic problem altogether. But it is a step in the right direction.

Read more: What Really Happens to Your Trash?

Emma Von Zeipel
Emma Von Zeipel is a staff writer at Law Street Media. She is originally from one of the islands of Stockholm, Sweden. After working for Democratic Voice of Burma in Thailand, she ended up in New York City. She has a BA in journalism from Stockholm University and is passionate about human rights, good books, horses, and European chocolate. Contact Emma at EVonZeipel@LawStreetMedia.com.

The post Could This Caterpillar Help Solve one of the World’s Pollution Problems? appeared first on Law Street.

]]>
https://legacy.lawstreetmedia.com/blogs/technology-blog/caterpillar-help-solve-pollution-problem/feed/ 0 60464
What Really Happens to Your Trash? https://legacy.lawstreetmedia.com/issues/energy-and-environment/really-happens-trash/ https://legacy.lawstreetmedia.com/issues/energy-and-environment/really-happens-trash/#respond Tue, 02 Aug 2016 20:56:47 +0000 http://lawstreetmedia.com/?p=53191

What different disposal methods mean for the environment.

The post What Really Happens to Your Trash? appeared first on Law Street.

]]>
"King of the Trash Hill" courtesy of [Alan Levine via Flickr]

We buy products, use them, and then dispose of them. After we’re done with our stuff, we throw it in the trash and someone comes to take it away–out of sight, out of mind. But trash doesn’t really disappear; it takes up a larger and larger physical presence on our planet each year. In 2012, the world produced 2.6 trillion pounds of waste, all of which had to be disposed of. About 46 percent of that was organic waste, 17 percent paper, 10 percent plastic, 5 percent glass, 4 percent metal, and another 18 percent comprised of miscellaneous other materials.

Handled incorrectly, this 2.6 trillion pound mess can cause serious problems for the environment, from polluting freshwater to suffocating unsuspecting animals looking for a meal. Some of our trash gets buried underground, some of it gets burned, and some is thrown into the ocean. There are solutions that would allow trash to be made useful again, including composting and recycling. Organic waste, which makes up the majority of worldwide waste, can be turned into fertilizer and certain materials can be recycled to build new products. Read on to learn how different waste disposal methods work and what their exact impacts are on our planet.


Landfills

The vast majority of trash worldwide goes into landfills, which basically means that it’s buried in a huge hole in the ground. Generally, the bottom is covered with a liner, made out of clay or synthetic materials, that acts as a barrier preventing the trash from leaking into the surrounding environment. The waste is collected in different cells and as the cells fill up, they are covered and a new layer, or “lift,” is started above them. Over time, landfills produce a liquid called leachate that consists of dissolved and suspended trash materials. Because of this, landfills must also have a drainage system that collects the highly polluting leachate and stores it on site or at a wastewater plant for treatment. If leachate breaks through the liner, it can pollute ecosystems and ruin groundwater aquifers, making groundwater monitoring around landfills extremely important.

As the trash degrades, it releases carbon dioxide and methane, which inevitably rise up into the atmosphere. Often, the water soluble carbon dioxide will leave the landfill with the leachate, but methane release poses a serious problem to the environment. To control emissions, methane must be captured and contained in storage wells, where it is either burned off and turned into the less potent carbon dioxide or used as a power source. Because landfills create methane on their own and save the trouble of drilling for it, some companies have started to use landfill gas-to-energy systems, using the methane to generate power for the surrounding areas.

As a disposal method, landfills are far from perfect. Maintaining one is a constant struggle to control the polluting leachate released below and the heat-trapping greenhouse gasses that escape above. Furthermore, landfills are intended for waste containment, not waste elimination. The trash doesn’t go anywhere, it simply sits in the cells and piles up to greater and greater heights as the population increases and waste streams continue to grow larger. In this sense, landfills can be thought of as one of the most permanent things modern humans have created, giant holes filled with trash that will still be on earth long after the pyramids crumble.

However, landfilling waste is still preferable to, for instance, doing nothing with it. Some waste simply can’t be recycled or composted, and this stuff still needs a place to go. If we don’t contain our trash it enters the world and its ecosystems as litter and can cause great damage to the areas it inhabits. Possibly the most famous example of this is the Great Pacific Garbage Patch, a vast area of floating litter that extends between North America’s Western Coast and Japan. The trash is caught in a series of underwater currents called the North Pacific Subtropical Gyre, which carries it in a perpetual vortex. The trash is comprised of countless non-biodegradable items, such as clothes, machinery, and a giant soup of microplastics. Furthermore, the majority (about 70 percent) of marine debris sinks, which means that below the surface of the garbage patch, beyond where we can see, there may be an ocean floor covered with the denser trash that’s been dumped in the water.

Much of the debris in the ocean was dumped by cargo ships and commercial fishing vessels, but plenty of it was simply cast off from different countries. We do need a place to put all this stuff and landfills provide an important service in this sense. However, one of the big problems with landfills is that much of what’s inside of them doesn’t need to be there; if we were to remove the recyclables and organic waste from landfills it would cause them to take up significantly less space.


Can Recycling be an Effective Solution?

Some materials, paper, plastic, glass, and various metals can be recycled and used again to create new products (a lesser known recyclable material is actually cooking oil, which can be converted into biofuel for use as an energy source). Recycling is one of the most sustainable alternative methods of waste disposal out there. However, not everything can be recycled and even then, most recycling processes generally have low levels of efficiency.

Plastics, for instance, have a huge presence in ecosystems around the globe. Currently, we’re heading toward having more pounds of plastic in the ocean than living creatures. Plastic can suffocate animals that accidentally consume it and can also release harmful phthalates into the surrounding environment. Recycling is absolutely necessary if we want to save marine and land ecosystems from plastic litter. However, only one major type of plastic called thermoplastics, which can be softened by heat, are able to be recycled. The other major category, thermosets, cannot be remolded with heat. Because they can’t be recycled, it’s crucially important that they are still sent to a landfill because they can cause environmental harm if stored improperly.

Thermoplastics don’t undergo chemical changes when they’re exposed to heat and can be melted down and reformed into new products, making them work well as recyclables. While recycling a piece of plastic is never 100 percent efficient (and usually far from it), reusing plastics still has a powerful impact on the industry. About 60 percent of energy is saved when creating a plastic product out of recyclables instead of raw materials, and every piece of plastic that is recycled represents a piece that isn’t in a landfill, or worse, an ocean.

Paper, like plastic, has a fairly low level of efficiency when recycled. Pieces of paper must be shredded down before they can be reused, which continuously makes the fibers shorter and shorter. After five to seven times through the system, fibers become frayed to uselessness. In fact, aluminum, copper, and glass are the only materials that can be recycled endlessly. While they all go through different processes, each essentially amounts to exposing the material to extreme heat and breaking it down to be rebuilt in a new form. However, due to the high cost of reprocessing glass, many businesses don’t actually accept glass waste, or will merely throw it out when they receive it.

While electronic waste is made out of several recyclable metals, it also contains a number of rare earth metals, which can be dangerous when released into the environment or exposed to humans. Because of this, e-waste must be disposed of and recycled in a very particular way. Check out this previous Law Street article for an in-depth breakdown of global e-waste disposal.

Landfill trash

“Landfill” courtesy of “Aaron ‘tango’ Tang via Flickr


Composting

Organic waste makes up a staggering 46 percent of waste worldwide. Despite this, proper food waste disposal methods are rarely talked about. About two-thirds of the average household waste can be recycled; if citizens everywhere adopted the practice it would make a huge difference in the global waste problem. Adding compost to a garden can dramatically increase the health of the soil by neutralizing ph and binding soil particles together, enabling them to better retain water and nutrients.

One problem with composting is that most people don’t see any value to it. Unless you’re interested in personally growing something, compost won’t be useful to you. If you live in an urban setting, it most likely won’t be useful to anyone near you either. Some cities have programs that collect compostable waste in neighborhoods to supply nearby farms. This gives the people in the area reason to adopt the practice and provides a free source of fertilizer for farmers; it can also have the added benefit of educating people on problems of organic waste that they may have been unaware of.


The Role of Incineration

Incineration is one of the more controversial methods of waste disposal out there and it’s been growing rapidly in recent years, especially in Scandinavian countries. This process either burns (or melts down and then burns) all waste that enters a waste plant to convert it into energy. Many love incineration and its proponents say that it makes trash disappear, leaving no physical burden behind while also providing the useful service of generating energy. The temperatures inside incinerators are often so high that they also destroy harmful chemicals and pathogens, making them ideal for the disposal of hazardous waste. While incineration is practiced widely throughout Scandinavia, Norway is currently the world’s leader in turning trash into energy. Norway, in fact, imports trash from other European countries, earning it a profit and a free source of power.

Incineration does offer a way to change the way trash is looked at from a burden to a commodity. It’s nothing new for countries, states, and territories to export their waste for another area to deal with, but generally the importer only gains profit, and still has to deal with the burden itself. In the United States, for instance, about 17 percent of municipal waste crosses a state boundary and the trash trade was a $4 billion dollar industry in 2005. However, the trash market inevitably creates waste havens in states that decide to commit to the industry and build mega-landfills. Pennsylvania, for instance, is the trash capital of the country, importing 10 million tons of waste each year. This can benefit local economies, but is widely hated by the people who live in them. Many argue that incineration could make a significant difference in the way trash importing and exporting is handled. If waste is looked upon as a useful source of energy instead of something to be buried in the ground, then a state like Pennsylvania could use its position in the market to generate domestic energy instead of increasing the size of its dumps.

However, incineration is not without serious drawbacks. The trash burning process creates toxic emissions, although particulate matter, ash, and, toxins are collected in mandatory filters. As the ash builds up, it must be stored carefully on-site, and there’s currently no real way to treat or remove it. It’s also been argued that very small particles of ash and dioxins can still make their way through filters, which could be very dangerous to the health of those living near an incinerator. Furthermore, incinerators have an adverse effect on climate change, producing more carbon dioxide and mercury even than coal-fired power plants. They also release nitrous oxide, and ammonia, and organic carbon. Valuable recyclable materials such as glass, metal, and plastic, are completely destroyed during incineration, which is a huge waste of resources that could otherwise be recycled. The EPA concluded in a 2009 study that if the United States were to adopt large-scale recycling and composting, this could mitigate up to 42 percent of our national emissions. Incineration, on the other hand, destroys recyclables and produces emissions, further exacerbating the problem of global warming.


Conclusion

The world produces a lot of trash and we’re only going to produce more as time goes on. The worst possible option is to do nothing with all this trash and simply leave it to cover our forests and oceans. Landfilling is an effective alternative to this, making sure that all the trash is contained and, ideally monitored and controlled so it won’t hurt the environment. However, the landfills fill up and we keep making more trash. Responsible waste management requires us to keep sustainability in mind when we think about the way we dispose of our waste and what we send to the landfill.

Many governments advocate for waste to energy incineration, but ultimately this will only release more greenhouse gasses into the atmosphere and destroy valuable resources. Widespread composting, alternatively, could eliminate just about half of all the world’s waste, an absolutely enormous difference. While not every material can be recycled and not every recycling process is perfectly efficient, reusing our products can still have a huge impact by reducing the need to mine for more resources and the energy needed to process new products. If we want to make our trash more sustainable, then recycling and composting need to be the cornerstones of global waste disposal.


References

Aljazeera: Dirty Power: Sweden Wants Your Garbage for Energy

Apartment Therapy: What Really Happens to all that Stuff You Recycle

The Atlantic: 2.6 Trillion Pounds of Garbage: Where Does the World’s Trash Go?

Eco Ants: Waste Incineration

Bright Hub Engineering: Pros and Cons of Incineration for Landfill Relief

Earth 911: The Benefits of Using Compost in Your Garden

Environmental Protection Agency: Opportunities to Reduce Greenhouse Gas Emissions through Materials and Land Management Practices

The Guardian: Full Scale of Plastic in the World’s Oceans Revealed for the First Time

The Guardian: Trash to Cash: Norway Leads the Way in Turning Waste into Energy

Global Alliance for Incinerator Alternatives: Incinerators: Myths vs. Facts about “Waste to Energy”

International Panel on Climate Change: Emissions in Waste Incineration 

MRC Polymers: Recycling Facts

National Geographic: The Great Pacific Garbage Patch

The Leachate Expert Website: What is Leachate?

Less is More: What Happens to Trash

Philadelphia: Is Pennsylvania America’s Dumping Ground?

The Trash Blog: Trash Trade in the U.S.

Republic Services: Landfill Science

SF Gate: How Many Times can Something be Recycled?

The Wall Street Journal: High Costs Put Cracks in Glass Recycling Programs

The Warren: Resistant Materials: Plastics

Washington Post: By 2050, There Will be More Plastic than Fish in the World’s Oceans, Study Says

Kyle Downey
Kyle Downey is an Environmental Issues Specialist for Law Street Media. He graduated from Skidmore College with a Bachelor’s degree in Environmental Studies. His main passions are environmentalism and social justice. Contact Kyle at Staff@LawStreetMedia.com.

The post What Really Happens to Your Trash? appeared first on Law Street.

]]>
https://legacy.lawstreetmedia.com/issues/energy-and-environment/really-happens-trash/feed/ 0 53191
One Man’s Trash is Another Man’s Shoes: Adidas’s Plan to Tackle Ocean Trash https://legacy.lawstreetmedia.com/blogs/energy-environment-blog/one-mans-trash-another-mans-shoes-adidass-plan-tackle-ocean-trash/ https://legacy.lawstreetmedia.com/blogs/energy-environment-blog/one-mans-trash-another-mans-shoes-adidass-plan-tackle-ocean-trash/#respond Tue, 14 Jul 2015 19:47:37 +0000 http://lawstreetmedia.wpengine.com/?p=44585

Life in plastic isn’t always fantastic.

The post One Man’s Trash is Another Man’s Shoes: Adidas’s Plan to Tackle Ocean Trash appeared first on Law Street.

]]>
Image courtesy of [Bo Eide via Flickr]

Life in plastic isn’t always fantastic. So why do we continue to cover our world in it? In the United States alone, we generate about 33 million tons of plastic waste per year. But in 2013, only nine percent of that total plastic waste was recovered for recycling. So where does the remaining 91 percent of plastic waste end up? While a significant portion of our trash is piled high in landfills, eight million tons of plastic trash ended up in the ocean from coastal countries in 2010. At this rate, the ocean trash tonnage is on track to increase tenfold in the next decade unless we take substantial steps to decrease our waste and improve the ways that garbage is collected and managed. One company is taking that challenge head on–Adidas has figured out one unique way to reduce, reuse, and recycle. Fairly soon, you may be able to look down at your feet to see the company’s new earth-friendly sneakers.

It makes sense to try to monetize our ocean pollution, particularly for the most industry-heavy countries. While China claims the top spot on the list of countries generating the greatest amounts of ocean-bound trash, the United States is 20th on the list. If the recyclable materials in the United States waste stream were recycled, we would generate over 7 billion dollars—that’s equivalent to Donald Trump’s purported net worth. More important than the monetary implications, non-recycled plastic waste in particular is responsible for the deaths of over a million seabirds and 100,000 marine mammals, including sea turtles, sea lions, and seals each year. The plastic that doesn’t end up in a sea turtle’s stomach pollutes our oceans, poisons our water, and stays there. The average time for a plastic bottle to degrade completely is at least 450 years but some take as long as 1000 years to biodegrade.

There is an obvious need to find ways to harmonize nature and the consumptive, wasteful system we now maintain. That’s one goal of the new partnership between Adidas and Parley for the Oceans, a New York-based ocean conservation organization. At the end of June, Adidas announced a prototype for a running shoe made completely of plastic trash, gillnet fishing, and deep sea trawling found in the ocean.

One of Parley’s goals is to “make environmental protection fiscally lucrative for pacesetting major companies,” and that’s exactly what this shoe will do. Adidas has plans to roll out more recycled, plastic-based products later this year, all in a larger effort to highlight ocean-based environmental issues and promote efforts to counteract marine pollution.

The Sea Shepherd Conservation Society, a non-profit, marine conservation organization that uses direct action tactics to protect marine life, was responsible for retrieving the materials that make up the outer design of the Adidas shoe. Sea Shepherd conservationists went on a 110-day expedition where they collected plastic from the ocean floor and even confiscated gillnets after they tracked down an illegal fishing boat off the west coast of Africa. The plastic that was collected went into the upper shoe structure and the green gillnets were knitted into the top of the sneaker to create its colorful design.

Adidas should be applauded for taking the lead in environmentally-aware sportswear. The company is the world’s third most valuable brand in the sports industry, just after Nike and ESPN, with a net worth of $6.8 billion dollars. This new sneaker and the upcoming line of shoes made from recycled plastics prove that even the big companies can go green, and do it in style. After all, trash looks much better when it’s being recycled on a shoe than it does when it’s polluting the ocean.

Emily Dalgo
Emily Dalgo is a member of the American University Class of 2017 and a Law Street Media Fellow during the Summer of 2015. Contact Emily at staff@LawStreetMedia.com.

The post One Man’s Trash is Another Man’s Shoes: Adidas’s Plan to Tackle Ocean Trash appeared first on Law Street.

]]>
https://legacy.lawstreetmedia.com/blogs/energy-environment-blog/one-mans-trash-another-mans-shoes-adidass-plan-tackle-ocean-trash/feed/ 0 44585
Composting is Great, Reducing Waste Output is Better https://legacy.lawstreetmedia.com/blogs/composting-great-reducing-waste-output-better/ https://legacy.lawstreetmedia.com/blogs/composting-great-reducing-waste-output-better/#comments Mon, 14 Jul 2014 16:32:39 +0000 http://lawstreetmedia.wpengine.com/?p=20172

Composting offers us a buffer against wasteful lifestyles and slightly reduces the environmental consequences that would result. It is up to us, however, not to depend on new practices as excuses for bad habits. We would be better off with a more successful attempt at getting children to eat healthy, or at the very least, not take the food on their trays if they absolutely will not eat it. The less we take, the less we dispose, which is a better practice regardless of the means of disposal.

The post Composting is Great, Reducing Waste Output is Better appeared first on Law Street.

]]>

A thrifty friend used to point out that the savings at a store sale are misleading. While a shopper can save money on a marked down item, he would save even more if he refrained from purchasing it in the first place, since they probably do not actually need it. One is lured in by the promise of a lesser burden, in this case financial. This concept applies to the disposal process as well.

Composting is a process by which food scraps and other organic leftovers are added to a specially prepared soil so as to create a nutrient-rich mixture. This is a sustainable practice for several reasons.

  1. Composting lessens the amount of trash we produce, which ultimately ends up in a landfill. One can break this process down further: consider the reduced amount of air and noise pollution that would result from fewer garbage trucks traveling the roads, or the reduced number of garbage bags produced (and the environmental consequences of the manufacturing process therein).
  2. Composting is recycling at its maximum. This special soil often serves as the site for small gardens, or even larger scale agricultural purposes. Composting uses waste to produce something new by natural means. Even formal recycling, which is still a vital practice in which everyone should partake, requires a detailed mechanized process of breaking down and re-manufacturing the products in order to be redistributed.
  3. Composting instills a sense of community participation and teamwork. Its sites are often locally oriented. People feel like they are pitching in and doing their part both to help the earth as individuals and as group, and working toward a more sustainable future.

A  recent New York Times article detailed the growth of the New York City school composting program, which started in 2012, and now includes more than two hundred schools. Again, this is a fantastic program and participants are confident that eventually public school composting will be city wide. The program does not encourage children to pursue healthier eating habits. The author of the article, Al Baker, quoted one school’s assistant principal who offered consolation by explaining that even though the children are not eating the healthy foods more, at least it’s not going to waste. Part of this sticky situation is a series of city health regulations that forbid the redistribution of foods once the packages have been opened, Baker clarifies. Therefore, when the children take the healthy foods on their trays and then do not eat them, it goes to composting instead of trash so this helps balance things out.

While this is true, composting offers us a buffer against wasteful lifestyles and slightly reduces the environmental consequences that would result. Rather, it is up to us not to depend on new practices as excuses for bad habits. We would be better off with a more successful attempt at getting children to eat healthy, or at the very least, not take the food on their trays if they absolutely will not eat it. The less we take, the less we dispose, which is a better practice regardless of the means of disposal.

We must be cautious not to be lulled into a false sense of accomplishment like when we buy store items on sale. I recently worked at a conservation society fundraiser where it was made known to the guests that food scraps would not be trashed, but composed, keeping with the organization’s philosophy. I was astounded by the amount of uneaten food that went into these receptacles. What was the cause of this? Of course, we as Westerners have been criticized by others, and rightly do not hesitate to criticize ourselves, for our overindulgence and lack of appreciation for the great gift that is a full belly three times per day. This seemed excessive, though. Could it be that people were less conflicted about not finishing their food because they knew that it would be composted and not trashed?

Fortunately, composting is probably here to stay. It offers us many opportunities and we should take advantage of them. The very fact that the concept is catching wind is indicative of the general trend in consciousness toward environmentally friendly behavior. But we must be cautious not to become too dependent on it, content to sit back and create waste knowing that somebody else will take care of the problem and turn negative impact into something positive and productive for us. Composting should be a calling card inviting us to take action on our own initiative.

Whether it’s burning fewer fossil fuels, recycling plastics, or finishing our vegetables, the path to sustainability lies not just in improved technologies or more efficient practices, but in responsible individual consumer decisions.

Franklin R. Halprin (@FHalprin) holds an MA in History & Environmental Politics from Rutgers University where he studied human-environmental relationships and settlement patterns in the nineteenth century Southwest. His research focuses on the influences of social and cultural factors on the development of environmental policy. Contact Franklin at staff@LawStreetMedia.com.

Featured image courtesy of [Ksd5 via Wikipedia]

Franklin R. Halprin
Franklin R. Halprin holds an MA in History & Environmental Politics from Rutgers University where he studied human-environmental relationships and settlement patterns in the nineteenth century Southwest. His research focuses on the influences of social and cultural factors on the development of environmental policy. Contact Frank at staff@LawStreetMedia.com.

The post Composting is Great, Reducing Waste Output is Better appeared first on Law Street.

]]>
https://legacy.lawstreetmedia.com/blogs/composting-great-reducing-waste-output-better/feed/ 3 20172